Arginine–glycine–aspartic acid–polyethylene glycol–polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture
نویسندگان
چکیده
The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.
منابع مشابه
Efficient delivery of docetaxel for the treatment of brain tumors by cyclic RGD-tagged polymeric micelles.
The treatment of glioblastoma, and other types of brain cancer, is limited due to the poor transport of drugs across the blood brain barrier and poor penetration of the blood‑brain‑tumor barrier. In the present study, cyclic Arginine‑Glycine‑Aspartic acid‑D‑Tyrosine‑Lysine [c(RGDyK)], that has a high binding affinity to integrin αvβ3 receptors, that are overexpressed in glioblastoma cancers, wa...
متن کاملSynthesis and characterization of nanoscale dendritic RGD clusters for potential applications in tissue engineering and drug delivery
Spatial control over the distribution and the aggregation of arginine-glycine-aspartate (RGD) peptides at the nanoscale significantly affects cell responses. For example, nanoscale clustering of RGD peptides can induce integrins to cluster, thus triggering complete cell signaling. Dendrimers have a unique, highly branched, nearly spherical and symmetrical structure with low polydispersity, nano...
متن کاملAggregation-enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging.
We report polymeric nanomicelles doped with organic fluorophores (StCN, (Z)-2,3-bis[4-(N-4-(diphenylamino)styryl)phenyl]-acrylonitrile), which have the property of aggregation-enhanced fluorescence. The fluorescent nanomicelles have two unique features: (1) They give much brighter fluorescence emission than mono-fluorophores. (2) The nanomicelles with amphiphilic copolymers [e.g., phospholipids...
متن کاملRecent Findings Concerning PAMAM Dendrimer Conjugates with Cyclodextrins as Carriers of DNA and RNA
We have evaluated the potential use of various polyamidoamine (PAMAM) dendrimer [dendrimer, generation (G) 2-4] conjugates with cyclodextrins (CyDs) as novel DNA and RNA carriers. Among the various dendrimer conjugates with CyDs, the dendrimer (G3) conjugate with α-CyD having an average degree of substitution (DS) of 2.4 [α-CDE (G3, DS2)] displayed remarkable properties as DNA, shRNA and siRNA ...
متن کاملEffect of RGD secondary structure and the synergy site PHSRN on cell adhesion, spreading and specific integrin engagement.
The relationship between the form of cell adhesion, ligand presentation, and cell receptor function was characterized using model Langmuir-Blodgett supported films, containing lipid-conjugated peptide ligands, in which isolated variables of the ligand presentation were systematically altered. First, the conformation of an adhesive Arginine-Glycine-Aspartic acid (RGD) peptide was varied by synth...
متن کامل